LETTERS 2006 Vol. 8, No. 14 ³¹⁵³-**³¹⁵⁶**

ORGANIC

Metal-Catalyzed Chemoselective Cycloisomerization of cis-2,4-Dien-1-als to 3-Cyclopentenones and 4-Alkylidene-3,4-dihydro-2H-pyrans

Ching-Yu Lo, Chung-Chang Lin, Hsin-Mei Cheng, and Rai-Shung Liu*

Department of Chemistry, National Tsing-Hua University, Hsinchu, Taiwan, 30043, Republic of China

rsliu@mx.nthu.edu.tw

Received May 22, 2006

ABSTRACT

PtCl2 (5 mol %) catalyst effected cycloisomerization of cis-2,4-dien-1-al (1) to 3-cyclopentenone (3) efficiently in hot toluene. In the presence of p-TSA, this PtCl₂ catalysis gave 2-cyclopentenone (5) exclusively because of the secondary isomerization reaction. Although the 1–2 equilibrium **state greatly favors aldehyde (1), PdCl2(PhCN)2 (5 mol %) catalyzed cycloisomerization of aldehyde (1) to 4,6,7,8-tetrahydro-3H-isochromene (4) smoothly in hot toluene. A plausible mechanism is proposed on the basis of reaction observation and isotope-labeled experiment.**

Metal-catalyzed cycloisomerization of an acyclic molecule to more than one cyclic structure is challenging and useful in organic synthesis. One prominent example is the cycloisomerization of 1,6- and 1,7-enynes with suitable catalysts to produce various carbocyclic and heterocyclic compounds.¹ A *cis*-2,4-dien-1-al functionality is often encountered in organic synthesis, and this species is prone to thermally reversible 6-*π*-electrocyclization to give 2*H*-pyran as depicted in Scheme 1 (eq 1).^{2,3} The state of this equilibrium depends on the nature of its substituents. This thermal cyclization has been employed as a key step to construct complex polycyclic frameworks.3 Metal-catalyzed cycloisomerization of *cis*-2,4-dien-1-als has been studied extensively;^{4,5} such reactions produce 2-cyclopentenones exclusively via two

^{(1) (}a) Ma, S.-M.; Yu, S.; Gu, Z. *Angew. Chem.*, *Int. Ed.* **2006**, *45*, 200. (b) Bruneau, C. *Angew. Chem.*, *Int. Ed.* **2005**, *44*, 2328. (c) Aubert, C.; Buisine, O.; Malacria, M. *Chem. Re*V*.* **²⁰⁰²**, *¹⁰²*, 813. (d) Mendez, M.; Mamane, V.; Fu¨rstner, A. *Chemtracts* **2003**, *16*, 397.

⁽²⁾ Okamura, W. H.; De Lera, A. R. *Comprehensive Organic Synthesis*; Trost, B. M., Ed.; Pergamon: Oxford, 1991; Vol. 5, p 699.

⁽³⁾ For selected examples, see: (a) Tambar, U. K.; Kano, T.; Stoltz, B. M. *Org. Lett*. **2005**, *7*, 2413. (b) Lumb, J.-P.; Trauner, D. *Org. Lett.* **2005**, *7*, 5865. (c) Shoji, M.; Imai, H.; Shiina, I.; Kakeya, H.; Osada, H.; Hayashi, Y. *J. Org. Chem.* **2004**, *69*, 1548.

distinct pathways: (1) initial Lewis acid-catalyzed π 4a + *π*2a or Nazarov-type cyclization to give cyclopentadiene epoxide I intermediates⁴ or (2) initial formation of rhodiumhydride species \mathbf{II} via oxidative addition.⁵ Here, we report new metal-catalyzed chemoselective cyclization of *cis*-2,4 dien-1-als to 3-cyclopentenones and 4-alkylidene-3,4-dihydro-2*H*-pyran**,** respectively, in addition to the expected 3-cyclopentenones.

Table 1. Cyclization of *cis*-2,4-Dien-1-al **1** over Various Catalysts*^a*,*^b*

 a 5 mol % catalyst, [substrate] $= 0.25$ M. *b* Product yields are given after separation from a silica column.

As shown in Table 1, *cis*-2,4-dien-1-al **1** was selected as the studied molecule because similar aldehydes will not form 2*H*-pyran **2** at elevated temperatures**.** ⁶ We undertook a theoretic calculation (B3LYP/6-31G**) of the relative energies of its four possible cycloisomerization species **²**-**5**. The ease of formation of 2-cyclopentenone in most catalytic reactions is attributed to its conjugated stabilization energy, ca. 15-28 kcal/mol less than four other species. Heating aldehyde 1 alone in hot toluene $(100 \degree C, 54)$ h) led to its exclusive recovery although 2*H*-pyran **2** has enthalpy 5 kcal/ mol less than aldehyde 1 (entry 1).^{6,7} Cyclization of this aldehyde with $PfCl₂$ (5 mol %) catalyst in hot toluene (100 °C, 30 min) gave 3-cyclopentenone **3** efficiently (92%, entry 2), whereas this catalyst produced 2-cyclopentone **5** in the presence of *p*-toluenesulfonic acid (p-TSA, 5 mol %, entry 3). The role of p-TSA is the isomerization of 3-cyclopentenone 3 to its conjugated isomer 5 . Notably, $PdCl_2(PhCN)_2$ (5 mol %) produced 4,6,7,8-tetrahydro-3*H*-isochromene **4** in 87% yield under optimum conditions. Among other π -alkyne activators (entries 4-7), only AgOTf (5 mol %) was catalytically efficient in hot toluene and gave 2-cyclopentenone **5** in 91% yield.

The value of this catalytic cyclization is manifested by formation of not only the expected 2-cyclopentenone **5,** but also the unprecedented 3-cyclopentenone **3** and 4-alkylidene-3,4-dihydro-2*H*-pyran **4**. Table 2 shows additional examples

Table 2. PtCl₂-Catalyzed Chemoselective Cycloisomerization of *cis*-2,4-Dien-1-als to 3-Cyclopentenones

cis- 2,4-dien-1-al ^a	product b (yields)	cis - 2,4-dien-1-al ^a	product ^b (yields)
R^3 R^2 сно	\mathbb{R}^3 R^2 R^1	R^2	
(1) R ¹ = R ² = $R^3 = H(6)$	21 (81%)	(9) $R^1 = R^2 = Me$ $X = CH(^tBu)$ (14)	29 (91%)
(2) $R^1 = R^2 = H$, R^3 = Me (7) (3) $R^3 = H$.	22 (83%) 23 (92%)	(10) $R^1 =$ ⁿ Pr, R ² =H $X = CH(^tBu)$ $(E/Z=2.25, 15)$	30 (dr = 1.40) 92%
R^1 , $R^2 = -(CH_2)_4 - (8)$ (4) $R^3 = H$.	24 (92%)	(11) $R^1 = R^2 = Me$ $X = O(16)$	31 (88%)
R^1 , R^2 = -(CH ₂) ₅ - (9) (5) $R^1 = R^3 = H$, $R^2 = {}^n$ Bu (10)	25 (dr = 1.10 , 92%	(12) $R^1 = n^p$ r, $R^2 = H$ $X = Q$ $(E/Z=1.2,17)$	32 (dr = 1.35 , 82%)
	R^2 R^1	(13) R ¹ , R ² = -(CH ₂) ₄ - $X = O(18)$	33 (72%), 51 (18%)
снс (6) R ¹ = H, R ² = ^I Pr, $(E/Z = 2.34, 11)$	26 (dr = 2.45) 89%)	CHC	34 (81%)
(7) R^1 = Me, R^2 =Et, $(E/Z = 1.39, 12)$	27 (dr = 1.17 , 91%)	(14) 19 ‡Βι	t Bư
(8) R^1 = Me, R^2 = ⁿ Pr, $(E/Z = 1.10, 13)$	28 (dr = 1.70 , 90%	(15) 20	35(81%)

^{*a*} 5% PdCl₂(PhCN)₂, toluene, [substrate] = 0.25 M, 100 °C, 12 h for entries 6 and 8, 14 h for entry 10, 16 h for entry 5, 18 h for entries, $1, 3-4$, and 11, and 24 h for entries 2, 7, and 9. *^b* Yields of products are given after separation from a silica column.

to generalize the catalytic cycloisomerization of various *cis*-2,4-dien-1-als **⁶**-**²⁰** to corresponding 3-cyclopentenones $21-35$ with PtCl₂ catalyst (5 mol %); the resulting yields were as high as 81-92% except for **¹⁸**, which gave desired **33** (72%) in addition to 4-alkylidene-3,4-dihydro-2*H*-pyran **51** (see Table 3) in 17% yield.⁸ These catalytic reactions were completed in hot toluene (100 $^{\circ}$ C) within 30-50 min, except for entry 15, which requires a longer period (6 h). 3-Cyclopentenone **25** was obtained in two isomeric forms $(dr = 1.10)$ from aldehyde **10** bearing a *trans*-hexene substituent (entry 5). In entry 14, aldehyde **19** equilibrates with its thermally 6-*π*-cyclized 2*H*-pyran species (aldehyde:

⁽⁴⁾ To the best of our knowledge, there is only one example for catalytic cycloisomerization of *cis*-2,4-dien-1-als to 2-cyclopentenones with use of Lewis acids, see: Miller, A. K.; Banghart, M. R.; Beaudry, C. M.; Suh, J. M.; Trauner, D. *Tetrahedron* **2003**, *59*, 8919 and reference therein.

⁽⁵⁾ Kundu, K.; McCullagh, J. V.; Morehead, A. T., Jr. *J. Am. Chem. Soc.* **2005**, *127*, 16042.

⁽⁶⁾ Tekevac, T. N.; Louie, J. *Org. Lett.* **2005**, *7*, 4037.

⁽⁷⁾ The absence of 2*H*-pyran **2** in this thermal equlibrium is attributed to the negative entropy change because acyclic 2,4-dien-1-al **1** is more conformationally flexible.

⁽⁸⁾ Formation of $2H$ -pyran **51** is attributed the acidity of the O-CH₂ of *cis*-2,4-dien-1-al **18**. This hypothesis is verified by treatment of alcohol **18** with PtCl₂ (5 mol %) and 2,6-lutidine (5 mol %) in hot toluene (100 °C, 14 h), which increased the yield of 2*H*-pyran **51** to 85%.

Table 3. PtCl₂-Catalyzed Chemoselective Cycloisomerization of *cis*-2,4-Dien-1-als to 3-Cyclopentenones

R^2 2 ¹ PdCl ₂ (PhCN) ₂	R^1	R^2 R ¹
сно 8, 10-19	42-52	23, 27-28
$cis-2.4$ -dien-1-al ^a	additive	product $(yields)^b$
(1) $R^1 = H$, $R^2 = {}^nBu$ $X = CH_2(E\text{-isomer}, 10)$		42 (77%)
(2) $R^1 = H$, $R^2 = i Pr$ $X = CH_2 (E/Z = 2.34, 11)$		43 (75%)
(3) $R^1 = Me$, $R^2 = Et$		44 (21%), 27 (58%)
$X = CH_2$, $(E/Z = 1.39, 12)$	5% 2,6-lutidine 44 (78%)	
(4) $R^1 = Me$, $R^2 = {}^nPr$		$45(11\%)$, $28(69\%)$
$X = CH_2 (E/Z = 1.10, 13)$	5% 2,6-lutidine $45(75\%)$	
(5) R ¹ , R ² = $-(CH2)4$		46 (13%) , 23 (72%)
$X = CH_2$, (8)	5% 2,6-lutidine	46 (75%)
$(6) R1, R2 = Me$ $X = CH({}^{t}Bu)$ (14)		47 (82%)
(7) $R^1 = H$, $R^2 = {}^nPr$ $X = CH({}^{t}Bu) (E/Z = 2.25, 15)$		48 (75%)
$(8) R1, R2 = Me$ $X = O(16)$		49 (85%)
(9) $R^1 = Me$, $R^2 = {}^nPr$ $X = Q$ ($E/Z = 1.20, 17$)		50(83%)
$(10) R1, R2 = -(CH2)4$ $X = O(18)$		51(83%)
$(11) R1, R2 = Me$ $X = -(CH2)2 - (19)$	5% 2,6-lutidine 52 (61%)	

 a 5% PdCl₂(PhCN)₂, toluene, [substrate] = 0.25 M, 100 °C, 12 h for entries 6 and 8, 14 h for entry 10, 16 h for entry 5, 18 h for entries 1, $3-4$, and 11, and 24 h for entries 2, 7, and 9. *^b* Yields of products are given after separation from a silica column.

 $2H$ -pyran $= 12:88$), and such an equilibrium mixture can be transformed into 3-cyclopentenone **34** (81%) efficiently with PtCl₂. This catalytic reaction is further compatible with an acyclic 2,4-dien-al **20** and gave the expected 3-enone **35** in 81% yield.

The PtCl₂-catalyzed synthesis of 3-cyclopentenones involves unusual skeletal rearrangement for special *cis*-2,4 dien-1-als **³⁶**-**³⁸** bearing a bulky *tert*-butyl and phenyl group at the C(2)-carbon. As shown in Scheme 2, treatment of

^{*a*} 5% PtCl₂, [substrate] = 0.25 M, toluene, 100 °C, 10 h for entries 1 and 2 h for entries 2 and 3. *^b*Yields of products are given after separation from a silica column.

aldehydes $36-38$ with PtCl₂ (5 mol %) in hot toluene (100 °C) for 2 h gave two isomeric products **³⁹**-**41**(**A**) and **³⁹**- **41**(**B**) which were not separable from silica column. 3-Cyclopententones $39-41(A)$ are related to their isomeric forms **³⁹**-**41**(**B**) by a 1,3-migration of the oxygen atom.

Table 3 shows the generalization of the $PdCl₂$ -catalyzed synthesis of 4-alkylidene-3,4-dihydro-2*H*-pyran derivatives **⁴²**-**⁵²** with use of the same *cis*-2,4-dien-1-als **⁸** and **¹⁰**- **19**. Synthesis of such 2*H*-pyrans is extendable to aldehydes **¹⁰**-**11**, and gave desired products **⁴²** and **⁴³** in 77% and 75% yields, respectively. In entries $3-5$, cyclization of aldehydes $12-13$ and 8 by using $PdCl_2(PhCN)_2$ catalyst (5) mol %) produced preferably 3-cyclopentenones **²⁷**-**²⁸** and **²³**, rather than the desired 2*H*-pyrans **⁴⁴**-**46**. This chemoselectivity problem was circumvented by using 2,6-lutidine (5%), and in such cases 2*H*-pyrans **⁴⁴**-**⁴⁶** were produced exclusively (75-78%). For the remaining aldehydes **¹⁴**- 18, PdCl₂ maintains high cyclization efficiencies toward formation of 2*H*-pyrans **⁴⁷**-**⁵¹** with 75-83% yields in the absence of 2,6-lutidine additives. Cyclization of aldehyde **19** requires 2,6-lutidine (5%) and $PdCl_2(PhCN)_2$ to furnish 2*H*-pyran **52** in 61% yield.

We also prepared ² H- and 13C-labeled samples **1** and **37** to elucidate the mechanism of formation of 3-cyclopentenones. As shown in Scheme 3, species **1** bearing a deuterated

aldehyde produced 3-enone **3** with a 1,2-deuterium migration. In contrast, we did not observe an oxygen migration for 3-enone **3** produced from species **1** bearing a 10% 13Cenriched alkenyl C(1) carbon. Cyclization of *cis*-2,4-dien-al **37** bearing a deuterated aldehyde gave two 3-enones **40(A**) and $40(B)$ bearing a deuterium at their C(2)Ph and $=C(4)$ carbons, respectively, and no loss of deuterium occurred.

The 1,3-oxygen migration shown by 3-cyclopentenones **³⁹**-**41**(**B**) (Scheme 2) excludes a conventional Lewiscatalyzed c4a + c2a cyclization mechanism.^{4,9} Nazarov-type cyclization4,10,11 is also unlikely to occur because *cis*-2,4 dien-1-al **10** bearing a *trans*-hexenyl substituent gave two

^{(9) (}a) Ireland, C.; Faulkner, D. J.; Solheim, B. A.; Clardy, J. *J. Am. Chem. Soc.* **1972**, *94*, 6767. (b) George, M. V.; Mitra, A.; Sukumaran, K. B. *Angew. Chem.*, *Int. Ed*. **1980**, *19*, 973.

⁽¹⁰⁾ Habermas, K. L.; Denmark, S. E.; Jones, K. T. *Org. React.* **1994**, *45*, 1.

isomers of 3-cyclopentenone **25** in equal population (see Table 2, entry 5), inconsistent with the expected trans isomer according to Nazarov cyclization. Scheme 4 shows a

plausible pathway to rationalize the oxygen migration and isotopic labeling experiments. The formation of 3-cyclopentenone is initiated with an intramolecular ene-aldehyde condensation¹² to form an OPt (IV) -allyl species **B**. This species preferably generates cyclopentadiene epoxide **D** via reductive elimination, leading to 3-cyclopentenone **40A** with a 1,2-deuterium migration.¹³ In the case of a bulky R^1 group, species **B** likely undergoes reductive elimination to form oxabicyclic alkene species **C** reversibly. The reversible nature of this transformation allows the formation of a second OPt- (IV)-allyl intermediate **B**′, and ultimately gave the isomeric 3-cyclopentenone **40B** via intermediate **D**. Most *cis*-2,4-dien-1-als with a moderate size $R¹$ substituent are expected to give 3-cyclopentenone such as species **40A** without oxygen migration.14 The feasibility of the interconversion between intermediates **B** and **C**, as well as **C** and **B**, was recently proposed in a ruthenium-based catalysis.15

(11) In the Nazarov-type cyclization, the cyclization follows the conrotatory mode to give epoxide opposite to the *n*-propyl substituent. PtCl₂catalyzed rearrangement of this vinyl epoxide is expected to give *trans*-3 cyclopentenone via a 1,2-hydrogen shift.

(12) Review: Snider, B. In *The Prins Reaction and Carbonyl Ene Reactions*; Trost B. M., Fleming, I., Heathcock, C. H., Eds.; Pergamon Press: New York, 1991; Vol. 2, pp 527-561.

(13) For metal-catalyzed transformation of vinyl epoxides into 3-en-1 ones, see: (a) Suzuki, M.; Oda, Y.; Noyori, R. *J. Am. Chem. Soc.* **1979**, *¹⁰¹*, 63. (b) Rosenberger, M.; Jackson, W.; Saucy, G. *Hel*V*. Chim. Acta* **1980**, *63*, 1665.

For *cis*-2,4-dien-1-al **12,** the use of 2,6-lutidine (5%) to alter the cyclization chemoselectivity in the PdCl₂-based catalysis (Table 3, entries 3) is informative about the relation of the two new cyclizations. This observation indicates that an equilibrium exists between **A** and **E** as depicted in Scheme 5. With PdCl2 catalyst, most *cis*-2,4-dien-als follow the **A**

 \rightarrow **F** \rightarrow **G** pathway except for alcohol such as 12, which gave 3-cyclopentenone **27** as major products unless 2,6 lutidine is present. We envision that this pyridine base accelerates the deprotonation reaction of intermediate **F** and preferably gives 2*H*-pyrans **44** with alternation of chemoselectivity.

In summary, we have achieved chemoselective cycloisomerization of *cis*-2,4-dien-1-als to 3-cyclopentenones and 4-alkylidene-3,4-dihydro-2H-pyrans using $PtCl₂$ and $PdCl₂$ - $(PhCN)_2$, respectively. In the presence of p-TSA catalyst, PtCl₂ also led to formation of conjugated 2-cyclopentenones. These new metal-catalyzed reactions highlight the synthetic utility of *cis*-2,4-dien-1-als with the availability of various carbocyclic and oxygen heterocyclic compounds. The use of *cis*-2,4-dien-1-al as a building block to construct a complex molecular framework will be more attractive than before.

Acknowledgment. This work was supported by the National Science Council, Taiwan.

Supporting Information Available: Experimental procedures, spectral data, and NMR spectra of key compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL061248H

⁽¹⁴⁾ The *gem*-dialkyl group of the alkenyl substituent of 2,4-dien-1-al is expected to block this oxygen transfer process, and this hypothesis is supported by a high A/B ratio $(A/B = 2.0)$ of species **38** compared to that $(A/B = 0.58)$ of its vinyl analogue **37**. (A/B) 0.58) of its vinyl analogue **³⁷**. (15) Villeneuve, K.; Tam, W. *J. Am. Chem. Soc.* **2006**, *128*, 3514.